Streptococcal pyrogenic exotoxin B cleaves GSDMA and triggers pyroptosis - Nature.com

Abstract

Gasdermins, a family of five pore-forming proteins (GSDMA–GSDME) in humans expressed predominantly in the skin, mucosa and immune sentinel cells, are key executioners of inflammatory cell death (pyroptosis), which recruits immune cells to infection sites and promotes protective immunity1,2. Pore formation is triggered by gasdermin cleavage1,2. Although the proteases that activate GSDMB, C, D and E have been identified, how GSDMA—the dominant gasdermin in the skin—is activated, remains unknown. Streptococcus pyogenes, also known as group A Streptococcus (GAS), is a major skin pathogen that causes substantial morbidity and mortality worldwide3. Here we show that the GAS cysteine protease SpeB virulence factor triggers keratinocyte pyroptosis by cleaving GSDMA after Gln246, unleashing an active N-terminal fragment that triggers pyroptosis. Gsdma1 genetic deficiency blunts mouse immune responses to GAS, resulting in uncontrolled bacterial dissemination and death. GSDMA acts as both a sensor and substrate of GAS SpeB and as an effector to trigger pyroptosis, adding a simple one-molecule mechanism for host recognition and control of virulence of a dangerous microbial pathogen.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

Buy

All prices are NET prices.

Fig. 1: The GAS virulence factor SpeB triggers lytic death of skin epithelial cells.
Fig. 2: SpeB triggers pyroptosis in a GSDMA-dependent manner.
Fig. 3: SpeB directly cleaves GSDMA after Gln246.
Fig. 4: Gsdma1 deficiency blunts host anti-GAS immunity.

Data availability

All data supporting the findings of this study are included in this manuscript and its supplementary information. Source data are provided with this paper.

References

  1. Broz, P., Pelegrin, P. & Shao, F. The gasdermins, a protein family executing cell death and inflammation. Nat. Rev. Immunol. 20, 143–157 (2020).

    CAS  Article  Google Scholar 

  2. Liu, X., Xia, S., Zhang, Z., Wu, H. & Lieberman, J. Channelling inflammation: gasdermins in physiology and disease. Nat. Rev. Drug Discov. 20, 384–405 (2021).

    CAS  Article  Google Scholar 

  3. Cole, J. N., Barnett, T. C., Nizet, V. & Walker, M. J. Molecular insight into invasive group A streptococcal disease. Nat. Rev. Microbiol. 9, 724–736 (2011).

    CAS  Article  Google Scholar 

  4. Musser, J. M., Stockbauer, K., Kapur, V. & Rudgers, G. W. Substitution of cysteine 192 in a highly conserved Streptococcus pyogenes extracellular cysteine protease (interleukin 1beta convertase) alters proteolytic activity and ablates zymogen processing. Infect. Immun. 64, 1913–1917 (1996).

    CAS  Article  Google Scholar 

  5. Svensson, M. D. et al. Role for a secreted cysteine proteinase in the establishment of host tissue tropism by group A streptococci. Mol. Microbiol. 38, 242–253 (2000).

    CAS  Article  Google Scholar 

  6. Cole, J. N. et al. Trigger for group A streptococcal M1T1 invasive disease. FASEB J. 20, 1745–1747 (2006).

    CAS  Article  Google Scholar 

  7. Shelburne, S. A., 3rd et al. Growth characteristics of and virulence factor production by group A Streptococcus during cultivation in human saliva. Infect. Immun. 73, 4723–4731 (2005).

    CAS  Article  Google Scholar 

  8. Aziz, R. K. et al. Invasive M1T1 group A Streptococcus undergoes a phase-shift in vivo to prevent proteolytic degradation of multiple virulence factors by SpeB. Mol. Microbiol. 51, 123–134 (2004).

    CAS  Article  Google Scholar 

  9. Liu, X. et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535, 153–158 (2016).

    ADS  CAS  Article  Google Scholar 

  10. Ding, J. et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535, 111–116 (2016).

    ADS  CAS  Article  Google Scholar 

  11. Aglietti, R. A. et al. GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes. Proc. Natl Acad. Sci. USA 113, 7858–7863 (2016).

    CAS  Article  Google Scholar 

  12. Sborgi, L. et al. GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death. EMBO J. 35, 1766–1778 (2016).

    CAS  Article  Google Scholar 

  13. Sumitomo, T. et al. Streptococcal cysteine protease-mediated cleavage of desmogleins is involved in the pathogenesis of cutaneous infection. Front. Cell Infect. Microbiol. 8, 10 (2018).

    Article  Google Scholar 

  14. Saouda, M., Wu, W., Conran, P. & Boyle, M. D. Streptococcal pyrogenic exotoxin B enhances tissue damage initiated by other Streptococcus pyogenes products. J. Infect. Dis. 184, 723–731 (2001).

    CAS  Article  Google Scholar 

  15. Paz, I. et al. Galectin-3, a marker for vacuole lysis by invasive pathogens. Cell Microbiol. 12, 530–544 (2010).

    CAS  Article  Google Scholar 

  16. Doran, J. D. et al. Autocatalytic processing of the streptococcal cysteine protease zymogen: processing mechanism and characterization of the autoproteolytic cleavage sites. Eur. J. Biochem. 263, 145–151 (1999).

    CAS  Article  Google Scholar 

  17. Gerwin, B. I., Stein, W. H. & Moore, S. On the specificity of streptococcal proteinase. J. Biol. Chem. 241, 3331–3339 (1966).

    CAS  Article  Google Scholar 

  18. Nomizu, M. et al. Substrate specificity of the streptococcal cysteine protease. J. Biol. Chem. 276, 44551–44556 (2001).

    CAS  Article  Google Scholar 

  19. Carroll, R. K. & Musser, J. M. From transcription to activation: how group A Streptococcus, the flesh-eating pathogen, regulates SpeB cysteine protease production. Mol. Microbiol. 81, 588–601 (2011).

    CAS  Article  Google Scholar 

  20. Lichtenberger, B. M. et al. Epidermal EGFR controls cutaneous host defense and prevents inflammation. Sci. Transl. Med. 5, 199ra111 (2013).

    Article  Google Scholar 

  21. Sawada, Y. et al. Cutaneous innate immune tolerance is mediated by epigenetic control of MAP2K3 by HDAC8/9. Sci. Immunol. 6, eabe1935 (2021).

    CAS  Article  Google Scholar 

  22. Kolaczkowska, E. & Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 13, 159–175 (2013).

    CAS  Article  Google Scholar 

  23. Barnett, T. C. et al. The globally disseminated M1T1 clone of group A Streptococcus evades autophagy for intracellular replication. Cell Host Microbe 14, 675–682 (2013).

    CAS  Article  Google Scholar 

  24. LaRock, C. N. et al. IL-1β is an innate immune sensor of microbial proteolysis. Sci. Immunol. 1, eaah3539 (2016).

    Article  Google Scholar 

  25. Nitsche-Schmitz, D. P., Rohde, M. & Chhatwal, G. S. Invasion mechanisms of Gram-positive pathogenic cocci. Thromb. Haemost. 98, 488–496 (2007).

    CAS  Article  Google Scholar 

  26. Rohde, M. & Chhatwal, G. S. Adherence and invasion of streptococci to eukaryotic cells and their role in disease pathogenesis. Curr. Top. Microbiol. Immunol. 368, 83–110 (2013).

    PubMed  Google Scholar 

  27. Hynes, W. & Sloan, M. in Streptococcus pyogenes: Basic Biology to Clinical Manifestations (eds Ferretti, J. J. et al.) (2016).

  28. Zhang, W., Rong, C., Chen, C. & Gao, G. F. Type-IVC secretion system: a novel subclass of type IV secretion system (T4SS) common existing in gram-positive genus Streptococcus. PLoS ONE 7, e46390 (2012).

    ADS  CAS  Article  Google Scholar 

  29. Richter, J. et al. Streptolysins are the primary inflammasome activators in macrophages during Streptococcus pyogenes infection. Immunol. Cell Biol. 99, 1040–1052(2021).

    CAS  Article  Google Scholar 

  30. Richter, J., Brouwer, S., Schroder, K. & Walker, M. J. Inflammasome activation and IL-1β signalling in group A Streptococcus disease. Cell Microbiol. 23, e13373 (2021).

    CAS  Article  Google Scholar 

  31. Brouwer, S., Barnett, T. C., Rivera-Hernandez, T., Rohde, M. & Walker, M. J. Streptococcus pyogenes adhesion and colonization. FEBS Lett. 590, 3739–3757 (2016).

    CAS  Article  Google Scholar 

  32. Carothers, K. E. et al. The streptococcal protease SpeB antagonizes the biofilms of the human pathogen Staphylococcus aureus USA300 through cleavage of the staphylococcal SdrC protein. J. Bacteriol. 202, e00008-e00020 (2020).

    CAS  Article  Google Scholar 

  33. Zhou, W. et al. Structure of the human cGAS–DNA complex reveals enhanced control of immune surveillance. Cell 174, 300–311.e311, (2018).

    CAS  Article  Google Scholar 

  34. Kranzusch, P. J. et al. Ancient origin of cGAS–STING reveals mechanism of universal 2′,3′ cGAMP signaling. Mol. Cell 59, 891–903 (2015).

    CAS  Article  Google Scholar 

  35. Orzalli, M. H. & Kagan, J. C. A one-protein signaling pathway in the innate immune system. Sci. Immunol. 1, eaah6184 (2016).

    Article  Google Scholar 

  36. Mitchell, P. S., Sandstrom, A. & Vance, R. E. The NLRP1 inflammasome: new mechanistic insights and unresolved mysteries. Curr. Opin. Immunol. 60, 37–45 (2019).

    CAS  Article  Google Scholar 

  37. Whatmore, A. M. & Kehoe, M. A. Horizontal gene transfer in the evolution of group A streptococcal emm-like genes: gene mosaics and variation in Vir regulons. Mol. Microbiol. 11, 363–374 (1994).

    CAS  Article  Google Scholar 

  38. Zheng, Z. Z. et al. The lysosomal Rag–Ragulator complex licenses RIPK1-and caspase-8-mediated pyroptosis by Yersinia. Science 372, eabg0269(2021).

    CAS  Article  Google Scholar 

  39. Li, W. et al. Quality control, modeling, and visualization of CRISPR screens with MAGeCK-VISPR. Genome Biol. 16, 281, (2015).

    CAS  Article  Google Scholar 

  40. Shepard, L. A., Shatursky, O., Johnson, A. E. & Tweten, R. K. The mechanism of pore assembly for a cholesterol-dependent cytolysin: formation of a large prepore complex precedes the insertion of the transmembrane β-hairpins. Biochemistry 39, 10284–10293 (2000).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank V. Nizet for sharing S. pyogenes isolate M1T1 strain 5448 and its isogenic mutant strains (ΔspeB, covR/S, ΔcepA and Δmac variants) as well as SpeB constructs, Z. Zhang for providing S. pyogenes M9, M12 amd M73 strains, C. Wang for providing Phage-Flag vector, and Y. Chen for providing a modified pET vector with an N-terminal 6×His-SUMO tag. This work was supported by National Key R&D Program of China (2020YFA0509600), National Natural Science Foundation of China (32122034, 31972897), Key Research Program of the Chinese Academy of Sciences (ZDBS-LY-SM008), Shanghai Pilot Program for Basic Research–Chinese Academy of Sciences, Shanghai Branch (JCYJ-SHFY-2021-009), Strategic Priority Research Program of Chinese Academy of Sciences (XDB29030300), Shanghai Municipal Science and Technology Major Project (2019SHZDZX02) (X.L.), NIH R01CA240955 and R01AI39914 (J.L.), NIH R01AI127654 (T.S.K.) and China Postdoctoral Science Foundation (2019M650193), Guangzhou Science and Technology Project (202102020093) (W.D.).

Author information

Affiliations

Authors

Popular posts from this blog

Rashes that look like scabies: Causes, symptoms, and treatment - Medical News Today

Urinary Tract Infection (UTI): Causes, Symptoms & Treatment - Cleveland Clinic

Symtuza: Uses, side effects, alternatives, and more - Medical News Today